importimportlib.resourcesaspkg_resourcesfromcollectionsimportOrderedDictimportwarningsimportnumbersimportosimportjsonimportpandasaspdPACKAGE_NAME="ccc"PYPI_PACKAGE_NAME="cost-of-capital-calculator"# Default year for model runsDEFAULT_START_YEAR=2024# Year of asset dataASSET_DATA_CSV_YEAR=2013# Start year for tax data (e.g. year of PUF)RECORDS_START_YEAR=2011# Latest year TaxData extrapolates toTC_LAST_YEAR=2034
[docs]defto_str(x):""" Function to decode string. Args: x (string): string to decode Returns: x (string): decoded string """ifhasattr(x,"decode"):returnx.decode()returnx
[docs]defstr_modified(i):""" Function to deal with conversion of a decimal number to a string. Args: i (scalar): number that will convert to string Returns: str_i (string): number converted to a string """ifi==27.5:str_i="27_5"else:str_i=str(int(i))returnstr_i
[docs]defdiff_two_tables(df1,df2):""" Create the difference between two dataframes. Args: df1 (Pandas DataFrame): first DataFrame in difference df2 (Pandas DataFrame): second DataFrame in difference Returns: diff_df (Pandas DataFrame): DataFrame with differences between two DataFrames """asserttuple(df1.columns)==tuple(df2.columns)diffs=OrderedDict()forcindf1.columns:try:example=getattr(df1,c).iloc[0]can_diff=isinstance(example,numbers.Number)ifcan_diff:diffs[c]=getattr(df1,c)-getattr(df2,c)else:diffs[c]=getattr(df1,c)exceptAttributeError:passdiff_df=pd.DataFrame(diffs)returndiff_df
[docs]defwavg(group,avg_name,weight_name):""" Computes a weighted average. Args: group (Pandas DataFrame): data for the particular grouping avg_name (string): name of variable to compute wgt avg with weight_name (string): name of weighting variables Returns: d (scalar): weighted avg for the group """warnings.filterwarnings("error")d=group[avg_name]w=group[weight_name]try:return(d*w).sum()/w.sum()exceptWarning:returnd.mean()
[docs]defread_egg_csv(fname,index_col=None):""" Read from egg the file named fname that contains CSV data and return pandas DataFrame containing the data. Args: fname (string): name of csv file index_col (string): name of column containing index Returns: vdf (Pandas DataFrame): data from csv file """try:withpkg_resources.open_text(PACKAGE_NAME,fname)asfile:vdf=pd.read_csv(file,index_col=index_col)exceptException:raiseValueError("could not read {} data from egg".format(fname))# cannot call read_egg_ function in unit testsreturnvdf# pragma: no cover
[docs]defread_egg_json(fname):""" Read from egg the file named fname that contains JSON data and return dictionary containing the data. Args: fname (string): name of JSON file Returns: pdict (dict): data from JSON file """try:withpkg_resources.open_text(PACKAGE_NAME,fname)asfile:pdict=json.loads(file.read(),object_pairs_hook=OrderedDict)exceptException:raiseValueError("could not read {} data from egg".format(fname))# cannot call read_egg_ function in unit testsreturnpdict# pragma: no cover
[docs]defjson_to_dict(json_text):""" Convert specified JSON text into an ordered Python dictionary. Args: json_text (string): JSON text Raises: ValueError: if json_text contains a JSON syntax error Returns: ordered_dict (collections.OrderedDict): JSON data expressed as an ordered Python dictionary. """try:ordered_dict=json.loads(json_text,object_pairs_hook=OrderedDict)exceptValueErrorasvalerr:text_lines=json_text.split("\n")msg="Text below contains invalid JSON:\n"msg+=str(valerr)+"\n"msg+="Above location of the first error may be approximate.\n"msg+="The invalid JSON text is between the lines:\n"bline=("XXXX----.----1----.----2----.----3----.----4""----.----5----.----6----.----7")msg+=bline+"\n"linenum=0forlineintext_lines:linenum+=1msg+="{:04d}{}".format(linenum,line)+"\n"msg+=bline+"\n"raiseValueError(msg)returnordered_dict
[docs]defsave_return_table(table_df,output_type=None,path=None,precision=0):""" Function to save or return a table of data. Args: table_df (Pandas DataFrame): table output_type (string): specifies the type of file to save table to: 'csv', 'tex', 'excel', 'json' path (string): specifies path to save file with table to precision (integer): number of significant digits to print. Defaults to 0. Returns: table_df (Pandas DataFrame): table """ifpathisNone:ifoutput_type=="tex":tab_str=table_df.to_latex(buf=path,index=False,na_rep="",float_format=lambdax:"%."+str(precision)+"0f"%x,)returntab_strelifoutput_type=="json":tab_str=table_df.to_json(path_or_buf=path,double_precision=0)returntab_strelifoutput_type=="html":withpd.option_context("display.precision",precision):tab_html=table_df.to_html(index=False,float_format=lambdax:"%10.0f"%x,classes="table table-striped table-hover",)returntab_htmlelse:returntable_dfelse:condition=((path.split(".")[-1]==output_type)or(path.split(".")[-1]=="xlsx"andoutput_type=="excel")or(path.split(".")[-1]=="xls"andoutput_type=="excel"))ifcondition:ifoutput_type=="tex":table_df.to_latex(buf=path,index=False,na_rep="",float_format=lambdax:"%."+str(precision)+"0f"%x,)elifoutput_type=="csv":table_df.to_csv(path_or_buf=path,index=False,na_rep="",float_format="%."+str(precision)+"0f",)elifoutput_type=="json":table_df.to_json(path_or_buf=path,double_precision=precision)elifoutput_type=="excel":table_df.to_excel(excel_writer=path,index=False,na_rep="",float_format="%."+str(precision)+"0f",)else:raiseValueError("Please enter a valid output format")