Source code for ccc.parameters

import os
import paramtools
import marshmallow as ma

# import ccc
from ccc.get_taxcalc_rates import get_rates
from ccc.utils import DEFAULT_START_YEAR, RECORDS_START_YEAR
import ccc.paramfunctions as pf

CURRENT_PATH = os.path.abspath(os.path.dirname(__file__))


[docs] class Specification(paramtools.Parameters): """ Specification class, contains model parameters. Inherits ParamTools Parameters abstract base class. """ defaults = os.path.join(CURRENT_PATH, "default_parameters.json") label_to_extend = "year" array_first = True def __init__( self, test=False, year=DEFAULT_START_YEAR, call_tc=False, baseline_policy=None, iit_reform=None, data="cps", gfactors=None, weights=None, records_start_year=RECORDS_START_YEAR, ): super().__init__() self.set_state(year=year) self.test = test self.year = year self.baseline_policy = baseline_policy self.iit_reform = iit_reform self.data = data # initialize parameter values from JSON self.ccc_initialize( call_tc=call_tc, gfactors=gfactors, weights=weights, records_start_year=records_start_year, )
[docs] def ccc_initialize( self, call_tc=False, gfactors=None, weights=None, records_start_year=RECORDS_START_YEAR, ): """ ParametersBase reads JSON file and sets attributes to self Next call self.compute_default_params for further initialization Args: test (bool): whether to run in test mode year (int): start year for simulation call_tc (bool): whether to use Tax-Calculator to estimate marginal tax rates baseline_policy (dict): individual income tax baseline policy parameters, reform dict makes changes relative to this baseline iit_reform (dict): individual income tax reform parameters data (str): data source for Tax-Calculator gfactors (dict): growth factors for Tax-Calculator weights (str): weights for Tax-Calculator Returns: None """ if call_tc: # Find individual income tax rates from Tax-Calculator indiv_rates = get_rates( self.year, self.baseline_policy, self.iit_reform, self.data, gfactors, weights, records_start_year, ) self.tau_pt = indiv_rates["tau_pt"] self.tau_div = indiv_rates["tau_div"] self.tau_int = indiv_rates["tau_int"] self.tau_scg = indiv_rates["tau_scg"] self.tau_lcg = indiv_rates["tau_lcg"] self.tau_td = indiv_rates["tau_td"] self.tau_h = indiv_rates["tau_h"] # does cheap calculations to find parameter values self.compute_default_params()
[docs] def compute_default_params(self): """ Does cheap calculations to return parameter values """ self.financing_list = ["mix", "d", "e"] self.entity_list = ["c", "pt"] # If new_view, then don't assume don't pay out any dividends # This because under new view, equity investments are financed # with retained earnings if self.new_view: self.m = 1 # Get after-tax return to savers self.s, E_pt = pf.calc_s(self) # Set rate of 1st layer of taxation on investment income self.u = {"c": self.CIT_rate} self.u_d = {"c": self.CIT_rate_ded} if not self.pt_entity_tax_ind.all(): self.u["pt"] = self.tau_pt else: self.u["pt"] = self.pt_entity_tax_rate self.u_d["pt"] = self.pt_scale_tax_rate_ded * self.u["pt"] E_dict = {"c": self.E_c, "pt": E_pt} # Allowance for Corporate Equity ace_dict = {"c": self.ace_c, "pt": self.ace_pt} # Handle R&E credits which vary by industry and asset type self.re_credit = { "By asset": self.re_credit_asset, "By industry": self.re_credit_industry, } # Limitation on interest deduction int_haircut_dict = { "c": self.interest_deduct_haircut_c, "pt": self.interest_deduct_haircut_pt, } # Debt financing ratios f_dict = { "c": {"mix": self.f_c, "d": 1.0, "e": 0.0}, "pt": {"mix": self.f_pt, "d": 1.0, "e": 0.0}, } # Compute firm discount factors self.r = {} for t in self.entity_list: self.r[t] = {} for f in self.financing_list: self.r[t][f] = pf.calc_r( self.u[t], self.nominal_interest_rate, self.inflation_rate, self.ace_int_rate, f_dict[t][f], int_haircut_dict[t], E_dict[t], ace_dict[t], ) # Compute firm after-tax rates of return r_prime = {} for t in self.entity_list: r_prime[t] = {} for f in self.financing_list: r_prime[t][f] = pf.calc_r_prime( self.nominal_interest_rate, self.inflation_rate, f_dict[t][f], E_dict[t], ) # if no entity level taxes on pass-throughs, ensure mettr and metr # on non-corp entities the same if not self.pt_entity_tax_ind: for f in self.financing_list: r_prime["pt"][f] = self.s["pt"][f] + self.inflation_rate # if entity level tax, assume distribute earnings at same rate corps # distribute dividends and these are taxed at dividends tax rate # (which seems likely). Also implicitly assumed that if entity # level tax, then only additional taxes on pass-through income are # capital gains and dividend taxes else: # keep debt and equity financing ratio the same even though now # entity level tax that might now favor debt self.s["pt"]["mix"] = ( self.f_pt * self.s["pt"]["d"] + (1 - self.f_pt) * self.s["c"]["e"] ) self.r_prime = r_prime # Map string tax methods into multiple of declining balance self.tax_methods = { "DB 200%": 2.0, "DB 150%": 1.5, "SL": 1.0, "Economic": 1.0, "Expensing": 1.0, } # Create dictionaries with depreciation system and rate of bonus # depreciation by asset class class_list = [3, 5, 7, 10, 15, 20, 25, 27.5, 39] class_list_str = [ (str(i) if i != 27.5 else "27_5") for i in class_list ] self.bonus_deprec = {} for i, cl in enumerate(class_list_str): self.bonus_deprec[class_list[i]] = getattr( self, "BonusDeprec_{}yr".format(cl) )[0] # to handle land and inventories # this is fixed later, but should work on this self.bonus_deprec[100] = 0.0
[docs] def default_parameters(self): """ Return Specification object same as self except it contains default values of all the parameters. Returns: dps (CCC Specification object): Specification instance with the default parameter values """ dps = Specification() return dps
[docs] def update_specification(self, revision, raise_errors=True): """ Updates parameter specification with values in revision dictionary. Args: revision (dict): dictionary or JSON string with one or more `PARAM: YEAR-VALUE-DICTIONARY` pairs raise_errors (boolean): if True (the default), raises ValueError when `parameter_errors` exists; if False, does not raise ValueError when `parameter_errors` exists and leaves error handling to caller of the update_specification method. Returns: None Raises: ValueError: if `raise_errors` is True AND `_validate_parameter_names_types` generates errors OR `_validate_parameter_values` generates errors. Notes: Given a revision dictionary, typical usage of the Specification class is as follows:: >>> spec = Specification() >>> spec.update_specification(revision) An example of a multi-parameter revision dictionary is as follows:: >>> revison = { 'CIT_rate': {2021: [0.25]}, 'BonusDeprec_3yr': {2021: 0.60}, } """ if not (isinstance(revision, dict) or isinstance(revision, str)): raise ValueError("ERROR: revision is not a dictionary or string") self.adjust(revision, raise_errors=raise_errors) self.compute_default_params()
[docs] @staticmethod def _read_json_revision(obj): """ Return a revision dictionary, which is suitable for use with the update_specification method, that is derived from the specified JSON object, which can be None or a string containing a local filename, a URL beginning with 'http' pointing to a JSON file hosted online, or a valid JSON text. """ return paramtools.Parameters.read_params(obj, "revision")
# end of Specification class class DepreciationRules(ma.Schema): # set some field validation ranges that can't set in JSON life = ma.fields.Float(validate=ma.validate.Range(min=0, max=100)) method = ma.fields.String( validate=ma.validate.OneOf( choices=[ "SL", "Expensing", "DB 150%", "DB 200%", "Economic", "Income Forecast", ] ) ) # Register custom type defined above paramtools.register_custom_type( "depreciation_rules", ma.fields.Nested(DepreciationRules()) )
[docs] class DepreciationParams(paramtools.Parameters): """ Depreciation parameters class, contains model depreciation parameters. Inherits ParamTools Parameters abstract base class. """ defaults = os.path.join(CURRENT_PATH, "tax_depreciation_rules.json")
[docs] def revision_warnings_errors(spec_revision): """ Return warnings and errors for the specified Cost-of-Capital-Calculator Specificaton revision in parameter values. Args: spec_revision (dict): dictionary suitable for use with the `Specification.update_specification method`. Returns: rtn_dict (dict): dicionary containing any warning or error messages """ rtn_dict = {"warnings": "", "errors": ""} spec = Specification() try: spec.update_specification(spec_revision, raise_errors=False) if spec._errors: rtn_dict["errors"] = spec._errors except ValueError as valerr_msg: rtn_dict["errors"] = valerr_msg.__str__() return rtn_dict