Source code for ccc.calcfunctions

import numpy as np
import pandas as pd
from ccc.constants import TAX_METHODS


[docs] def update_depr_methods(df, p, dp): """ Updates depreciation methods per changes from defaults that are specified by user. Args: df (Pandas DataFrame): assets by type and tax treatment p (CCC Specifications object): CCC parameters dp (CCC DepreciationParams object): asset-specific depreciation parameters Returns: df (Pandas DataFrame): assets by type and tax treatment with updated tax depreciation methods """ # update tax_deprec_rates based on user defined parameters # create dataframe with depreciation policy parameters for all # known years deprec_df = dp.expanded_df() # keep just the current year in the CCC parameters object deprec_df = deprec_df[deprec_df.year == p.year] # merge depreciation policy parameters to asset dataframe df.drop(columns=deprec_df.keys(), inplace=True, errors="ignore") df = df.merge( deprec_df, how="left", left_on="bea_asset_code", right_on="BEA_code" ) # add bonus depreciation to tax deprec parameters dataframe df["bonus"] = df["life"] # update tax_deprec_rates based on user defined parameters df.replace({"bonus": p.bonus_deprec}, inplace=True) # Compute b df["b"] = df["method"] df.replace({"b": TAX_METHODS}, regex=True, inplace=True) # use b value of 1 if method is not in TAX_METHODS # NOTE: not sure why the replae method doesn't work for this method # Related: had to comment this out in TAX_METHODS df.loc[df["b"] == "Income Forecast", "b"] = 1.0 # cast b as float df["b"] = df["b"].astype(float) # Set Y to length of depreciable life df["Y"] = df["life"] return df
[docs] def dbsl(Y, b, bonus, r): r""" Makes the calculation for the declining balance with a switch to straight line (DBSL) method of depreciation. .. math:: z = \frac{\beta}{\beta+r}\left[1-e^{-(\beta+r)Y^{*}}\right]+ \frac{e^{-\beta Y^{*}}}{(Y-Y^{*})r} \left[e^{-rY^{*}}-e^{-rY}\right] Args: Y (array_like): asset life in years b (array_like): scale of declining balance (e.g., b=2 means double declining balance) bonus (array_like): rate of bonus depreciation r (scalar): discount rate Returns: z (array_like): net present value of depreciation deductions for $1 of investment """ beta = b / Y Y_star = Y * (1 - (1 / b)) z = bonus + ( (1 - bonus) * ( ((beta / (beta + r)) * (1 - np.exp(-1 * (beta + r) * Y_star))) + ( (np.exp(-1 * beta * Y_star) / ((Y - Y_star) * r)) * (np.exp(-1 * r * Y_star) - np.exp(-1 * r * Y)) ) ) ) return z
[docs] def sl(Y, bonus, r): r""" Makes the calculation for straight line (SL) method of depreciation. .. math:: z = \frac{1 - e^{-rY}}{Yr} Args: Y (array_like): asset life in years bonus (array_like): rate of bonus depreciation r (scalar): discount rate Returns: z (array_like): net present value of depreciation deductions for $1 of investment """ z = bonus + ((1 - bonus) * ((1 - np.exp(-1 * r * Y)) / (r * Y))) return z
[docs] def econ(delta, bonus, r, pi): r""" Makes the calculation for the NPV of depreciation deductions using economic depreciation rates. .. math:: z = \frac{\delta}{(\delta + r - \pi)} Args: delta (array_like): rate of economic depreciation bonus (array_like): rate of bonus depreciation r (scalar): discount rate pi (scalar): inflation rate Returns: z (array_like): net present value of depreciation deductions for $1 of investment """ z = bonus + ((1 - bonus) * (delta / (delta + r - pi))) return z
def income_forecast(Y, delta, bonus, r): r""" Makes the calculation for the Income Forecast method. The Income Forecast method involved deducting expenses in relation to forecasted income over the next 10 years. CCC follows the CBO methodology (CBO, 2018: https://www.cbo.gov/system/files/2018-11/54648-Intangible_Assets.pdf) and approximate this method with the DBSL method, but with a the "b" factor determined by economic depreciation rates. .. math:: z = \frac{\beta}{\beta+r}\left[1-e^{-(\beta+r)Y^{*}}\right]+ \frac{e^{-\beta Y^{*}}}{(Y-Y^{*})r} \left[e^{-rY^{*}}-e^{-rY}\right] Args: Y (array_like): asset life in years delta (array_like): rate of economic depreciation bonus (array_like): rate of bonus depreciation r (scalar): discount rate Returns: z (array_like): net present value of depreciation deductions for $1 of investment """ b = 10 * delta beta = b / Y Y_star = Y * (1 - (1 / b)) z = bonus + ( (1 - bonus) * ( ((beta / (beta + r)) * (1 - np.exp(-1 * (beta + r) * Y_star))) + ( (np.exp(-1 * beta * Y_star) / ((Y - Y_star) * r)) * (np.exp(-1 * r * Y_star) - np.exp(-1 * r * Y)) ) ) ) return z
[docs] def npv_tax_depr(df, r, pi, land_expensing): """ Depending on the method of depreciation, makes calls to either the straight line or declining balance calculations. Args: df (Pandas DataFrame): assets by type and tax treatment r (scalar): discount rate pi (scalar): inflation rate land_expensing (scalar): rate of expensing on land Returns: z (Pandas series): NPV of depreciation deductions for all asset types and tax treatments """ idx = (df["method"] == "DB 200%") | (df["method"] == "DB 150%") df.loc[idx, "z"] = dbsl( df.loc[idx, "Y"], df.loc[idx, "b"], df.loc[idx, "bonus"], r ) idx = df["method"] == "SL" df.loc[idx, "z"] = sl(df.loc[idx, "Y"], df.loc[idx, "bonus"], r) idx = df["method"] == "Economic" df.loc[idx, "z"] = econ(df.loc[idx, "delta"], df.loc[idx, "bonus"], r, pi) idx = df["method"] == "Income Forecast" df.loc[idx, "z"] = income_forecast( df.loc[idx, "Y"], df.loc[idx, "delta"], df.loc[idx, "bonus"], r ) idx = df["method"] == "Expensing" df.loc[idx, "z"] = 1.0 idx = df["asset_name"] == "Land" df.loc[idx, "z"] = np.squeeze(land_expensing) idx = df["asset_name"] == "Inventories" df.loc[idx, "z"] = 0.0 # not sure why I have to do this with changes z = df["z"] return z
[docs] def eq_coc( delta, z, w, u, u_d, inv_tax_credit, psi, nu, pi, r, re_credit=None, asset_code=None, ind_code=None, ): r""" Compute the cost of capital .. math:: \rho = \frac{(r-\pi+\delta)}{1-u}(1-u_dz(1-\psi k) - k\nu)+w-\delta Args: delta (array_like): rate of economic depreciation z (array_like): net present value of depreciation deductions for $1 of investment w (scalar): property tax rate u (scalar): marginal tax rate for the first layer of income taxes u_d (scalar): marginal tax rate on deductions inv_tax_credit (scalar): investment tax credit rate psi (scalar): fraction investment tax credit that affects depreciable basis of the investment nu (scalar): NPV of the investment tax credit pi (scalar): inflation rate r (scalar): discount rate re_credit (dict): rate of R&E credit by asset or industry asset_code (array_like): asset code ind_code (array_like): industry code Returns: rho (array_like): the cost of capital """ # Initialize re_credit_rate (only needed if arrays are passed in -- # if not, can include the R&E credit in the inv_tax_credit object) if isinstance(delta, np.ndarray): re_credit_rate_ind = np.zeros_like(delta) re_credit_rate_asset = np.zeros_like(delta) # Update by R&E credit rate amounts by industry if (ind_code is not None) and (re_credit is not None): idx = [ index for index, element in enumerate(ind_code) if element in re_credit["By industry"].keys() ] ind_code_idx = [ind_code[i] for i in idx] re_credit_rate_ind[idx] = [ re_credit["By industry"][ic] for ic in ind_code_idx ] # Update by R&E credit rate amounts by asset if (asset_code is not None) and (re_credit is not None): idx = [ index for index, element in enumerate(asset_code) if element in re_credit["By asset"].keys() ] asset_code_idx = [asset_code[i] for i in idx] re_credit_rate_asset[idx] = [ re_credit["By asset"][ac] for ac in asset_code_idx ] # take the larger of the two R&E credit rates inv_tax_credit += np.maximum(re_credit_rate_asset, re_credit_rate_ind) rho = ( ((r - pi + delta) / (1 - u)) * (1 - inv_tax_credit * nu - u_d * z * (1 - psi * inv_tax_credit)) + w - delta ) return rho
[docs] def eq_coc_inventory(u, phi, Y_v, pi, r): r""" Compute the cost of capital for inventories .. math:: \rho = \phi \rho_{FIFO} + (1-\phi)\rho_{LIFO} Args: u (scalar): statutory marginal tax rate for the first layer of income taxes phi (scalar): fraction of inventories that use FIFO accounting Y_v (scalar): average number of year inventories are held pi (scalar): inflation rate r (scalar): discount rate Returns: rho (scalar): cost of capital for inventories """ rho_FIFO = ((1 / Y_v) * np.log((np.exp(r * Y_v) - u) / (1 - u))) - pi rho_LIFO = (1 / Y_v) * np.log((np.exp((r - pi) * Y_v) - u) / (1 - u)) rho = phi * rho_FIFO + (1 - phi) * rho_LIFO return rho
[docs] def eq_ucc(rho, delta): r""" Compute the user cost of capital .. math:: ucc = \rho + \delta Args: rho (array_like): cost of capital delta (array_like): rate of economic depreciation Returns: ucc (array_like): the user cost of capital """ ucc = rho + delta return ucc
[docs] def eq_metr(rho, r_prime, pi): r""" Compute the marginal effective tax rate (METR) .. math:: metr = \frac{\rho - (r^{'}-\pi)}{\rho} Args: rho (array_like): cost of capital r_prime (array_like): after-tax rate of return pi (scalar): inflation rate Returns: metr (array_like): METR """ metr = (rho - (r_prime - pi)) / rho return metr
[docs] def eq_mettr(rho, s): r""" Compute the marginal effective total tax rate (METTR) .. math:: mettr = \frac{\rho - s}{\rho} Args: rho (array_like): cost of capital s (array_like): after-tax return on savings Returns: mettr (array_like): METTR """ mettr = (rho - s) / rho return mettr
[docs] def eq_tax_wedge(rho, s): r""" Compute the tax wedge .. math:: wedge = \rho - s Args: rho (array_like): cost of capital s (array_like): after-tax return on savings Returns: wedge (array_like): tax wedge """ wedge = rho - s return wedge
[docs] def eq_eatr(rho, metr, p, u): r""" Compute the effective average tax rate (EATR). .. math:: eatr = \left(\frac{p - rho}{p}\right)u + \left(\frac{\rho}{p}\right)metr Args: rho (array_like): cost of capital metr (array_like): marginal effective tax rate p (scalar): profit rate u (scalar): statutory marginal tax rate for the first layer of income taxes Returns: eatr (array_like): EATR """ eatr = ((p - rho) / p) * u + (rho / p) * metr return eatr